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Nonlinear Dirac soliton in an externaI fieId 

Y Nogamits, F M Toyama$ and Z zhaot 
1 Department of Physics and Astronomy, McMaster University, Hamilton, 
Ontario, Canada L8S 4M1 
f Department of Communication and Information Sciences, Kyoto Sangyo University. 
Kyoto 603, Japan 

Received 20 September 1994 

Abstract.  the^ behaviour of the nonlinear Dirac soliton in an external potential in 1 + 1 
dimensions is examined by means o f a  collective variable msat~ and also by solving the nonlinear 
Dirac equation mmerically. When the potential is linear with m p e u  ro~coordioatex, the motion 
of the soliton centroid is found 10 be consistent with the clmsical relativistic equation of motion 
for a point particle. For a gened potential there is a deviation from the behaviour of the 
corresponding classical point panicle. This deviation can be interpreted as being caused by the 
finite size of the soliton. 

1. Introduction 

It is known that the nonlinear Schrodinger (NLS) soliton in 1 + 1 dimensions. placed in 
an external potential field V ( x )  which is linear or quadratic with respect to coordinate x ,  
moves exactly like a classical point particle [1,2]. The soliton centroid (centre of mass) 
obeys Newton’s equation of motion in a specified external potential. This can be shown 
analytically on the basis of an analogue of Ehrenfest’s theorem of quantum mechanics. 
Having seen this it is natural to ask the following question: Does the nonlinear Dirac 
(NLD) soliton in an external potential also behave like a classical relativistic particle? In 
other words, does the centroid of the NLD soliton obey the classical relativistic equation of 
motion for a point particle? The purpose of this paper is to find an answer to this question. 
Throughout this paper we work in 1 + I dimensions. 

We attempted to find the answer analytically but without success. One can see why it is 
difficult to do so if one recalls the fact that there is no straightforward analogue of Ehrenfest’s 
theorem for the Dirac equation in quantum mechanics. Unlike in the Schrodinger case, it is 
difficult to relate d(x)/dt to ( p )  in the relativistic case where ( )  means the expectation value. 
In this paper we examine the problem in two ways: (i) by means of a collective variable 
ansatz and (ii) by solving the NLD equation numerically. (i) is analytical but approximate; 
(ii) is essentially exact but there is a limit to the numerical accuracy. The results of the two 
methods complement each other. When V ( x )  is linear in x ,  our results strongly indicate 
that the motion of the soliton centroid is consistent with the classical relativistic equation of 
motion for a point particle. For V ( x )  of general form, we find a small deviation from the 
behaviour of the corresponding point particle. This deviation can be interpreted as being 
caused by the finite size of the soliton. 
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Let us add a remark about the usage of the word 'soliton'. A soliton is a special solitary 
wave such that, when it collides with another soliton, each of the solitons comes out exactly 
in the same shape as it had before the collision. The NLS soliton is a well-known example. 
Strictly speaking, the NLD solitary wave that we are going to consider is not a soliton. Its 
collision with another NLD soliton may lead to processes which resemble compound nuclear 
reactions [3]. Nevertheless let us call it the NLD soliton €or brevity. We do not consider 
soliton-soliton collisions in this paper. Rather we focus on an isolated soliton in an external 
field. 

In section 2 we summarize the one-soliton sohtion of the NLD equation with no external 
potential. In section 3 we examine a collective variable ansatz which leads to an equation 
of motion for the centroid of the NLD soliton in an external potential. Section 4 deals with 
an alternative form of the NLD equation which we also use in our numerical analysis. In 
section 5 we examine the behaviour of the NLD soliton in an external potential by solving 
the NLD equation numerically. The results are discussed in section 6. 

2. One-sofiton solution of the NLD equation 

The NLD equation that we consider in this section is 

ia,$ = L-i.8, + Bm - g(@+b@)BI+ (2.1) 

where a, = 3/81, 3, = a/ax. $t is the Hermitian adjoint of Jr, m(> 0) is a 'mass' 
parameter and g is a dimensionless coupling constant which we assume to be positive. For 
the 2 x 2 Dirac matrices c and p, we take c = uy and p = U, where the U'S  are the 
usual Pauli matrices. Throughout this paper we use units such that c = h = 1. For the 
normalization of $, it is understood that 

m m :, 

p(x .  t )  dr Jrt(x, t)Jr(x, t)dx = 1 (2.2) L L 
which is consistent with (2.1). The nonlinear term of (2.1) is the Lorentz scalar type. There 
are other types of nonlinearity, vector and pseudoscalar, or their linear combinations 141, 
but we focus on the NLD soliton with the scalar nonlinearity as a typical case. 

Let us first examine the soliton which is at rest at the origin. In this case we can assume 
that 

Then (2.1) is reduced to 

€4 = [-icdx + Bm - g(@'B@)BI@ (2.4) 

where d, = d/dx. The eigenvalue E and the wavefunction @ ( x )  are given by 

1 ( K p  [ (m + €)'/zCOSh(KX) 
-(m - €)1/2Sinh(Kx) = m + E  cosh(kx) 
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where K = (mz - c’)’/~ = g6/2 [3,4]. The energy of the soliton is given by 

+BmM - 34t,8b)2] 

= ~Z In (-) m+K . 
g m - K  (2.7) 

This M, which we interpret as the rest mass of the soliton, should not be confused with the 
mass parameter m that appears in the Dirac equation. 

The wavefunction @ ( x ,  f ;  U) for the soliton moving with a constant speed U can be 
obtained by applying the Lorentz transformation to the soliton at rest [3]: 

@ ( x ,  t ;  U) = L(y)@(x’)e-i6r’ (2.8) 

(2.9) 

y = (1 - u y / 2  x‘  = y ( x  - u t )  f’ = y ( t  - U) (2.10) 

where @(x’)  is the @ ( x )  with x replaced by x’ and a, i s  one of the Pauli matrices. Note 
that Alvarez and Carreras [3] used a, = 0, and p = a,. If we denote their two-component 
wavefunction by @A, it is related to our @ by 

(2.1 1) 

The energy and momentum carried by the soliton moving with speed U are given by 

E = y M  = (MI + P*)”~ p = uE. (2.12) 

These are exactly the same as the energy and momentum of a point particle of rest mass 
M and speed U. 

3. Collective variable ansatz 

We now examine the behaviour of the NLD soliton placed in an external potential. The~NLD 
equation is 

iac@ = [-ia& + pm - g(@’p@)p + v(x)I@. (3.1) 

The external potential V ( x )  is the zeroth component of a Lorentz vector, like the Coulomb 
potential. Rather than~trying to solve this equation, we introduce a collective variable ansatz 
for the @ of the soliton. Similar methods have been used for the NLS soliton [5] and also 
for the sine-Gordan soliton [61. ,Earlier references can be traced through [5,6].  

Our ansatz is to assume that the @ for the NLD soliton, whose centroid is at x = &), 
is given by @ ( x ,  t ;  U) of (2.8)  with the understanding that U = e = dc/dt and 

y = (1 - (2)-‘/2 x’ = y ( x  - 6 )  t’ = y ( t  - 4.). (3.2) 
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The ansatz implies that the structure of the soliton placed in an external potential remains 
essentially the same as that of the free soliton. The transformation ( x ,  t) -+ (x ’ ,  t’). however, 
is no longer a Lorentz transformation because the spccd 6 is not a constant. The inverse 
transformation is complicated. 

The energy of the soliton is given by 

dx [@t(-iuaz +Bm)@ - g p t B @ ) ’ +  V(x)@-’@]. (3.3) 

Substituting @ ( x ,  t ;  <) into (3.3), we obtain 

E = M ( l  - 62)-1’2 + Y(c ,&)  (3.4) 

(3.5) 

where we have used 

$t@ = q w L 4  = y&1 +<U),)@ = y& = yp(x’) .  (3.6) 

The &-dependence of Y(c,  <) arises through the y involved on the right-hand side of (3.5). 
Since no time derivative of @ appears in (3.3), we do not have to know that the t-dependence 
of 

Let us examine V ( 5 , i )  of the two cases in which we are particularly interested. If 
and y in going from (3.3) to (3.4). 

V ( x )  = - F x  (3.7) 

where F is a constant, we obtain 

R5) = V ( 5 )  = - F e  

which is independent of 8 .  We interpret E of (3.4) as the Hamiltonian for a point particle 
of mass M in classical mechanics. In terms of coordinate .$ and its conjugate momentum 
p ,  , the Hamiltonian reads as 

H = ( M 2  + p;)]” i- V(c)  pe = M i ( 1  - &2)-1J’. (3.9) 

This H leads to the equation of motion 

pc = -d(V($) = F (3.10) 

where pg = dpgfdt. This means that the soliton centroid behaves like a point particle of 
mass M .  

One may get the impression that, for V(x) = -Fx of (3.7), we have proved that the 
centroid of the NLD soliton exactly obeys the classical equation of motion (3.10). This is not 
necessarily correct because the wavefunction @ ( x ,  t ;  .$) that we have used is only an ansatz; 
it is not an exact solution of the NLD equation in the presence of the external potential V ( x ) .  
We will discuss this aspect in appendix 2. 

For the harmonic oscillator potential 

V ( x )  = (K/Z)X* (3.1 1) 
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we find 

where 

(3.13) 

This (x2 )  is the mean square radius of the soliton in its rest frame; it is a constant within 
ow ansatz. The &dependence of V ( f .  8) arises through the factor y-' = (1 -~g2) of the 
last term of (3.12). This is an effect of the finite size of the soliton; it vanishes if (xz) + 0. 
Such &-dependence does not appear in the corresponding problem for the NLs equation 

becomes different from that 
[1,21. 

Since V($,  () depends on &, the relation between p~ and 
of (3.9). If we start with the Lagrangian 

K 
2 

L = - M ( 1  - g2)1/2 - - (1 +iW) - V(C) (3.14) 

we obtain 

(3.15) 

H = pc& - L = M(1  - &2)-1/2+ V(<, g). (3.16) 

This H agrees with the E of (3.4) and justifies the Lagrangian of (3.14). As a Hamiltonian, 
in H is supposed to be eliminated in favour of pc .  This can be done by solving (3.15) 

as an equation for i, but we do not delve into this aspect. The Lagrangian (3.14) leads to 
the equation of motion 

,$< = -d<V(C) = -K<. (3.17) 

The mjectory which this equation predicts is-different from that of a point particle in 
potential V(<) because of the additional term with ( x 2 )  in ps of (3.15). The acceleration 
of the soliton is greater than that of the corresponding point particle. 

Before ending this section a remark would be in order. In our earlier study of the NLS 
soliton in a harmonic oscillator potential we emphasized that the external potential induces 
a change in the internal structllre of the soliton as compared with that of the free soliton 
[Z]. This does not happen (to the NLS soliton) if the external potential is a linear one. The 
NLD soliton in our ansatz has the same structure as the free soliton. This is probably a very 
good approximation when V ( x )  is linear in x .  When V ( x )  is quadratic in x 2 ,  however, the 
soliton structure will change and (x2) will become different from its free soliton counterpart. 
This aspect is ignored in our ansatz. On the motion of the soliton centroid, the change in 
the internal structure has no effect in the NLS case. In the NLD case, there will be such 
an effect but we suspect that it would be much smaller than the effect of the type that we 
discussed in the preceding paragraph. 
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4. The NLD equation in the body-ked coordinate system 

The NLD equation in the presence of an external potential is given by (3.1). We have 
numerically solved (3.1) for V ( x )  which is proportional to x or xz, with appropriate 
initial conditions which we will explain in the next section. We have also solved (3.1) 
by transforming it to an equation in- the ‘body-fixed‘ coordinate system. We tried the 
transformation to the body-fixed coordinate system because that is how the NLS equation 
with an cxtemal potential has been solved [1,21. This time the transformation does not 
seem to enable us to solve the NLD equation analytically. Examining the NLD equation in 
two different coordinate systems, however, serves as a good consistency test. 

Let us describe the transformation to the body-fixed coordinate system. We introduce a 
new coordinate y through 

where it is understood that the soliton centroid is at x = e(t) in the ‘laboratory system’. 
Rewrite @ as 

@(x, 2) = X(Y, O e x p [ i ~ ~ ( t ) ~ l  (4.2) 

where pF(t) is the momentum of the soliton as an anticipated classical particle in the 
laboratory system. Equation (3.1) then becomes 

i & x  = [-iffay + pm - g(x+px)p  + mpc + i$a,]x + [-<pe + ypc + V(Y + C)IX. (4.3) 

Let us consider the linear potential V ( x )  of (3.7). It is understood that :(t) satisfies the 
classical equation of motion (3.10) for a point particle of mass M. Then g(t) and pc(t) are 
known functions of t. For solutions of the classical equation of motion, see appendix 1. 
The terms proportional to y cancel in the second [...I of (4.3). If we further rewrite x as 

(4.3) becomes 

ia,x = [-iffa, + pm - g(x+px)p  +cup( + i<a,ix. (4.5) 

This equation determines the soliton wavefunction x(y, t)  in the body-fixed coordinate 
system. If the soliton behaves like a point paaicle, then its centroid should remain at rest 
in the y-coordinate system. We will see numerically that this i s  indeed the case in the next 
section. 

This transformation resembles 
the Galilei transformation rather than the Lorentz transformation. It is not the Galilei 
transformation though because is not a constant. One may wonder why we did not use 
a transformation like (3.2) which resembles the Lorentz transformation. The reason is that 
when speed & is not a constant, the inverse of such a transformation is very complicated. 

Let us add a remark about transformation (4.1). 
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i 5. Numerical solutioiis~~~s"- ' 

In this section we present numerical solutions of (3.1). For the parameters of the soliton, 
we arbitrarily take m = 1 and g = 1 throughout. Then the rest mass of the soliton becomes 
M = ln[(3 + 5'/')/2] = 0.9624. We present seven figures. In figures 1 6  we use the 
potential 

V ( x )  = - F ( x  - x o )  (5.1) 

where F is a constant. The constant xo which shifts the origin of the coordinate is 
unimportant. For a particle of rest mass M ,  the expected acceIeration is 

a = F / M .  (5.2) 

For F ,  we take F = 2.5 x 
F = 2.5 x 5.0 x and 7.5 x 

in figures 1 6  except~for figure 2 in which we take 
Only in figure 7 do we use 

V ( x )  = i K ( x  - x 0 y  (5.3) 

where K is a constant, which we assume to be K = 2 x 

I I 

300 

t 

0 

300 

t 

0 
60 120 
X 

0 

Figure 1. The trajectory of a soliton which starts at 
rest at x = xo = 30 and is accelerated. Its a c c e i d i o n  
is (2 = F J M  where F = 2.5 x IO-' and M = 0.9624. 
The units are such that c = h = m = I .  

Figure 2. (a) The trajectory of the centroid (the peak 
Of the density) of the soliton, (b) the trajectory of a 
classical point QMick of M ,  and (c) the trajectory of 
the classieel point particle of mass m (instead of M )  
are shown. (a )  and (b). which are indistinguishable 
from each other, are shown by a full curve, and (c) by 
a broken curve. For constant force F t h e  different 
values are used. F = 2.5 x io-'. 5.0 x lo-' and 
7.5 x IO-'. These values correspond to the three sets 
of curves, from the top to the bottom. The units are 
such that c = k  = m  = 1. 



1420 

412.5 
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I , 1 I I 

412.5 

t 

Fiwre 3. The soliton of figure I U seen in the 
body-fixed coordinate system. The units are such thal 
c = h = m = 1 .  

Figurr 4. The same as figure 3 except that B wrong 
&I) is used as explained in section 5. 

Figure 1 shows a soliton which is initially at rest at x = xg = 30. In solving (3.1) we 
started with +(x  - X O ,  I = 0; U = 0). The speed of the soliton at t = 300 is U = 0.615 in 
units of c. In figure 2, for each of the three values used for F ,  we plot (a) the trajectory of 
the peak of the density of the soliton, (b) the trajectory of a point particle of mass M, and (c) 
the trajectory of the classical point particle of mass m (instead of M). The trajectories (a) 
and (b) ,  which we find indistinguishable from each other, are shown with a full curve. The 
trajectory (c )  is shown with a broken curve, which clearly deviates from the full curve. This 
means that the soliton behaves like a point particle of mass M rather than m (> M). For 
the same value of F ,  the acceleration is larger for M than for m. This is because M < m. 

Figure 3 shows the soliton in the body-fixed coordinate system. Note that the soliton 
remains at rest at y = 60. Although it is difficult to see in the figure, close scrutiny reveals 
that the width of the soliton decreases in time. This is because of the~Lorentz contraction. 
Recall that the soliton is being accelerated in the laboratory system. Within the accuracy 
of our calculation, the contraction factor agrees with l j y .  

In figure 4, we used a ‘wrong’ :(t) which was obtained by assuming that the mass of 
the soliton is m (rather than M). The soliton does not stay at rest in this wrong body-fixed 
system. Instead the soliton moves in the positive y direction. In the laboratory system, the 
soliton moves faster than the origin of the y-coordinate system with the wrong f ( t ) .  This 
is consistent with what was shown in figure 2. 

In figure 5, we assumed that the potential is given by 

for x < xo 
for x > xg, - F ( x  - x g )  

V ( x )  = (5.4) 

This V ( x )  is not linear in x around x = xg.  In solving (3.1) we let the soliton start at 
x << xg with constant speed U = 0.1. We set up the initial wavefunction by means of 



Figure 5. The same as figure I except that the soliton 
is initially moving with a constant speed of U = 0.1. 
The constant force. XIS in the region of x > 30. 

Figure 6. Comparison of the trajectory (full curve) of 
the soliton centroid of figure 5 with the corresponding 
classical trajectory (broken curve). 

I I I I 
412.5 

t 

0 Figure 7. The soliton 
potentid of (5.3) with K 
such that c = h  = m  = 1. 

in the harmonic oscillator 
= 2 x The units are 

q ( x ,  t; U) in such a way that, if it were not for V ( x )  at all, ~~ the ~ soliton would arrive at 
x =xo = 30 at t = 150. The figure shows that the soliton begins to be accelerated around 
x =xg. 

Figure 6 compares the trajectory of the density peak of the soliton (full curve) with 
the corresponding point-particle trajectory (broken curve). In contrast to the situation that 
we saw in figure 1, these two trajectories do not agree. The soliton is ahead of the point- 
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particle partner. At first we were puzzled by this disagreement. We realized, however, that 
the disagreement is due to a finite-size effect of the soliton. Because of its finite extension, 
the soliton begins to feel the effect of V ( x )  of x > xo before the soliton centroid arrives at 
x = xo. For a classical point particle the acceleration begins exactly at the moment when 
the particle passes x = xo. Similar finite-size effects are also seen for the NLS soliton. 

Figure 7 shows the soliton placed in a harmonic oscillator potential (5.3) with K = 
2 x The soliton starts with the initial speed U = 0.3 at x = 60. We compared the 
motion of the density peak of the soliton with the corresponding point particle described 
by (3.15) and (3.17). We found that they agree within the accuracy of our calculation. In 
section 3 we pointed out that (3.17) is different from the equation of motion for a point 
particle in potentia1 V(6) because the pt of (3.15) is different from the usual pc of (3.9). 
This is due to the finite size of the soliton. This is a relativistic effect. For the values of the 
parameters that we took, we obtain (x ’ )  = 4.40 and hence ( K / M ) ( x 2 )  = 8.80 x << 1. 
Because of the smallness of this value of ( K / M ) ( x ’ ) ,  the finitesize effect of the harmonic 
oscillator case turned out to be too small to be discernible in our calculation. 

For the shape of the soliton, it shows Lorentz contraction with factor l / y  as far as we 
can discern from the figure. The structure change of the type that we discussed in the last 
paragraph of section 4 is too small to be seen in our examples. 

6. Discussion 

We have examined the behaviour of the NLD soliton which is placed in an external potential 
V ( x ) .  We assumed that the potential is either linear (V = - F x )  or quadratic (V = 4 K x Z ) .  
On the basis of a collective variable ansatz, we derived the equation of motion for the 
NLD soliton. For the linear potential V = -Fx,  the soliton centroid obeys the classical 
relativistic equation of motion (3.10). For the harmonic oscillator potential V = ~ K x ’ ,  we 
found a departure from the behaviour of the corresponding classical point particle; see (3.15). 
This is due to the finite size of the soliton. Next we solved the NLD equation numerically 
and found that the results are consistent with the prediction based on the collective variable 
ansatz. The departure from the classical point particle in the case of the harmonic oscillator, 
however, is too small to be discernible in our numerical examples. We also examined the 
caSe in which the potential is not exactly linear nor quadratic in the sense of (5.4). In that 
case, as shown in figure 6, we noticed a small but significant departure from the behaviour 
of the corresponding point particle. We interpreted this also as an effect of the finite size 
of the soliton. The finite-size effect of this type also shows up for the NLS soliton. 

For the NLS soliton in an external potential, it is known analytically that it behaves 
exactly like a classical Newtonian particle if the potential is linear or quadratic in x or 
if the size of the soliton can be ignored [1,2]. The results that we have found strongly 
suggest that similar situations hold for the NLD soliton. The NLD soliton behaves like a 
classical relativistic point particle if the potential is linear in x or if the size of the soliton 
can be ignored. There is a subtle difference between the NLS and the NLD solitons, however. 
For a quadratic potential the NLD soliton behaves slightly differently from its point-particle 
counterpart. This is a finite-size effect which has no counterpart for the NLS soliton. There 
is another interesting difference between the SchrBdinger and Dirac cases regarding the 
mass of the soliton. The mass of the NLS soliton is the same as the m that appears in the 
wave equation whereas the mass of the NLD soliton is M of (2.7). 

For the nonlinear term of the NLD equation, i.e. the ‘self-interaction’ term, we assumed 
the Lorentz scalar type. As long as the NLD equation has a free soliton solution which 
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conforms to the Lorentz transformation (as summarized in section 2), the collective variable 
method of section 3 applies to any nonlinearity in the same way. Of course different 
nonlinear terms will lead to different values of the soliton rest mass M .  Finally let us 
emphasize that, even for the simple potential V ( x )  = - F x ,  no analytical solution of (3.1) 
seems to be known. 
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Appendix 1. C1;lssical equation of motion 

Consider a particle of rest mass M which is subject to a force F .  The equation of motion 
for it is 

P = F  p = M y v  (Al . l )  

where y is the one defined by (2.10). If F is a constant, (Al.1) can be integrated with the 
results 

(A1.2) 

(A1.3) 

where a = F f M  and suffix 0 refers to the value at t = 0. We have chosen the 6-coordinate 
such that 6 = 0 at t = 0. 

When the external potential is the harmonic oscillator type, the equation of motion 
is given by (3.17) together with (3.15). We solved (3.17) numerically and compared the 
solution with the soliton trajectory of figure 7 .  

1 6 = ;(U +(at + Y0u0)21”z - YO1 

Appendix 2. The approximate nature of solution (3.1) 

In section 3 we used the ansatz 

* ( x s  2) = L ( Y ) @ [ Y ( ~  - t)lexp[-irv(t -&)I (A2.1) 

where L ( y ) ,  @ ( x )  and E are defined by (2.9), (2.6) and (2.5), respectively, but y = 
(1 - i2)-’/’. By substituting this into (3.1) and multiplying both sides with L-’eicr’, we 
arrive at 

- E(d,(y.$))x#(x‘) = V(x)+(x‘ )  (A2.2) 
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where @'(x') = d@(x')/br' and d, = d/dt. In deriving (A2.Z) the following formulae have 
been useful: 

(A2.3) 

L-'@L = y(1 - uuY)p L-IcuL = 01 L-'d,L = (y/Zuy)uY. (A2.4) 

Note that iuy is real. Therefore all the terms in (A21) except for the first term in [. . .] 
are real. It is clear that &is equation cannot be satisfied exactly. Note also that. if we 
assume that p = 0 and V ( x )  = -Fx, we obtain 

Edi(y&) = F. (A2.5) 

This is the equation of motion for a particle of rest mass c. Recall that 6 4 M .  Our 
numerical results show that (A23 is not satisfied. 
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